JEL Classification: C 15, C 53, G 31. | DOI: https://doi.org/10.31521/modecon.V49(2025)-27 |
Rud Oleksandr, PhD (Economics), Director of Limited Liability Company «MIG LTD», Kyiv, Ukraine
ORCID ID: 0009-0009-5750-5150
e-mail: rud.oleksandr@gmail.com
Modeling Сash Flows of Investment Projects Based on Probability Distributions
Abstract. Introduction. The article focuses on modeling cash flows in investment projects using probabilistic distributions, which is a key aspect of increasing the accuracy of assessments and making well-informed decisions under uncertainty. The author proposes two approaches to cash flow modeling: the first approach involves modeling the cash flow value in a given period, while the second approach focuses on modeling the parameters that influence the cash flow components. Special attention is given to building models based on random variables that reflect the specific characteristics of the project, taking into account unpredictable changes and risks inherent in the economic environment.
Purpose. An important part of the study is the classification of probability distributions, including discrete and continuous, symmetric and asymmetric, and single and multi-parameter models, which are selected depending on the nature of the variables and specific conditions of project implementation. Such classification allows for a more detailed analysis and understanding of possible project development scenarios under uncertainty.
The article emphasizes the importance of accurate estimation of parameters of probability distributions, since the accuracy of modeling results depends on it. Methods such as the method of moments and maximum likelihood are used to determine distribution parameters.
Results. To ensure modeling reliability, it is essential to test the consistency of selected distributions with real data. Visual and statistical tools can be used to assess how well the theoretical distribution matches empirical data, which is a critical step in building a reliable model.
The author suggests using the Monte Carlo method as the primary tool for simulating results, allowing the creation of multiple project development scenarios. This method makes it possible to determine the probability of achieving certain financial results and to assess the sensitivity of the project to changes in key parameters.
Conclusions. The proposed cash flow modeling algorithm contributes to improving the substantiation of investment decisions and optimizes the management of project risks and resources.
Keywords: cash flow; model; modeling; probabilistic distribution; random variable; distribution function; probability density function.
References:
- Avramenko, V. I. & Karimov, I. K. (2013) Teoriia ymovirnostei i matematychna statystyka [Probability theory and mathematical statistics]. Dniprodzerzhynsk: DDTU.
- Blank, I. O. (2014). Finansovyi menedzhment [Financial management]. Kyiv: Nika-Tsentr.
- Donchenko, V. S. & Sydorov, M. V.-S. (2015). Teoriia ymovirnostei ta matematychna statystyka dlia sotsialnykh nauk [Probability theory and mathematical statistics for social sciences]. Kyiv: VPTs “Kyivskyi universytet”.
- Zahorodnii, A. H., Vozniuk, H. L. & Smovzhenko, T. S. (2000). Finansovyi slovnyk [Financial dictionary]. Kyiv: Tovarystvo KOO “Znannia”.
- Kryvoviazuk, I. V., Pakholchuk, A. I. (2013). Protses pryiniattia hospodarskykh rishen ta yoho vplyv na efektyvnist diialnosti pidpryiemstva [The process of making business decisions and its impact on enterprise efficiency]. Efektyvna ekonomika (electronic journal), no. 4. http://nbuv.gov.ua/UJRN/efek_2013_4_47.
- Kropelnytska, S. O., Tsyhylyk, I. I. (2008). Analiz i rozrobka investytsiinykh proektiv [Analysis and development of investment projects]. Kyiv: Tsentr navchalnoi literatury.
- Likhouzova, T. A. (2018). Teoriia imovirnostei ta matematychna statystyka [Probability theory and mathematical statistics]. Kyiv: KPI im. Ihoria Sikorskoho.
- Poddierohin, A. M. (2005). Finansovyi menedzhment [Financial management]. Kyiv: KNEU.
- Rudenko, V. M. (2012). Matematychna statystyka [Mathematical statistics]. Kyiv: Tsentr uchbovoi literatury.
- Salyha, K. S. (2016). Imitatsiine modeliuvannia hroshovykh potokiv investytsiinykh proektiv [Simulation modeling of investment projects cash flows]. Derzhava ta rehiony. Seriia: Ekonomika ta pidpryiemnytstvo (electronic journal), no. 6, pp. 82-88. http://nbuv.gov.ua/UJRN/drep_2016_6_14.
- Chepeliuk, H. M. & Tkachenko, K. O. (2017). Metody otsinky investytsiinoho proektu, yaki vykorystovuiutsia pry bankivskomu investytsiinomu kredytuvanni [Methods of investment project evaluation used in bank investment lending]. Efektyvna ekonomika (electronic journal), no. 10. http://nbuv.gov.ua/UJRN/efek_2017_10_29.
- Ascioglu, A. (2008). Information asymmetry and investment-cash flow sensitivity. Journal of Banking & Finance, vol. 32, no. 6, pp. 1036-1048. https://doi.org/10.1016/j.jbankfin.2007.09.018.
Received: 01 February 2025
How to quote this article? |
Rud O. (2025). Modeling Сash Flows of Investment Projects Based on Probability Distributions. Modern Economics, 49(2025), 206-215. DOI: https://doi.org/10.31521/modecon.V49(2025)-27. |